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Using the two-body distribution function found earlier by the authors with 
the aid of new boundary conditions, the kinetic equation and the transport 
coefficients are obtained to zeroth and first order in the density. To zeroth 
order we recover the Boltzmann kinetic equation. To first order the resulting 
expressions differ from the ones obtained by Choh and Uhlenbeck, due to 
effects of the medium. 
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1. I N T R O D U C T I O N  

In  earlier papers (1,2~3 the authors  have obtained the first terms in the density 

expansion o f  the two-body distr ibut ion funct ion o f  a dense gas using boundary  

condi t ions  different f rom those proposed  by Bogolyubov.  It  was found that  

this virial expansion exists. 

1 Reactor, Centro Nuclear, Instituto Nacional de Energia Nuclear, Mexico City, Mexico. 
Facultad de Ciencias, Universidad Nacional Autdnoma de M6xico, Mexico City, Mexico. 

a Reference 2 will be referred to as I. Here we use the same notation as in I. 
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It is the purpose of this paper to use the results found in I in order to 
obtain the corresponding kinetic equation and transport coefficients to 
zeroth and first order in the density. 

To zeroth order in the density we recover the well-known Boltzmann 
kinetic equation. 

To first order in the density we find results that are different from those 
obtained by Choh and Uhlenbeck/8) This difference is due to the fact that 
we start from the convergent density expansion of the two-body distribution 
function, obtained in I, which is different from the function used by Choh 
and Uhlenbeck. These authors use the function obtained by Bogolyubov. (4) 
The difference in the distribution functions resides in the boundary conditions 
used to solve the BBGKY hierarchy. In our case we take into account the 
medium, whereas Bogolyubov did not. 

In order to evaluate the transport coefficients, we will use general formal 
results obtained without using the explicit expression for the two-body 
distribution function. (5) 

In a subsequent paper we will present the calculations leading to the 
transport coefficients up to second order in the density. It will be shown that 
these expressions exist. 

In Section 2 we give the basic expressions needed for the calculation of 
the kinetic equation and the transport coefficients. In Section 3 we discuss 
the approximation to zeroth order in the density and show that the Boltzmann 
kinetic equation is obtained. In Section 4 we discuss the solution of the 
kinetic equation to first order in the density. In Section 5 we give the explicit 
general expressions for the transport coefficients to first order in the density. 
Finally, in Section 6 we sum up our results. 

2. B A S I C  E X P R E S S I O N S  

In this section we write down several expressions which will be useful 
for our purpose. 

The kinetic equation is obtained from the first equation of the BBGKY 
hierarchy, 

~F1 + p__. ~F1 = q~(x IF0 (1) 
Ot m ~q 

where 

~ (x  [ F1) = n f dxz 012F2(x, X 2 l F1) (2) 

Here n is the particle density, x ~ (p, q), and F. z is the two-body distribu- 
tion function as a time-independent functional of F1 �9 
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As usual, we only consider the kinetic equation up to the first order in 
the gradients of the system. The kinetic equation then becomes {5) 

~F1 p ~ra ? ( orx ] 
-}- --'m eq = r [ Fl(q)) + j dx' q)'(x, x' I F~(q))(q' -- q)" \~7-1  ,=q 

(3) 

where q~(x t Fl(q)) is evaluated at the local distribution function Fl(q) and 
~0'(x, x' ] F~(q)) denotes the functional derivative of r with respect to F~ 
taken at the point x' and evaluated for the local distribution function F~(q). 

Using the Chapman-Enskog method to solve Eq. (3), with the intro- 
duction of the perturbation function ~ by means of 

F1 = F~"(1 + 4) (4) 

where q~ represents the linear nonuniformities in the macroscopic variables 
and /:1 ~ the local equilibrium single distribution function, one obtains a 
unique solution in the form 

e In 0 eu e ~(~2)# .  0q + d(~2)  ~ o ~  :~_ + ~(~2) ~-  �9 u (5) 

The notation used is explained in Ref. 5. The functions ~r ~ ,  and 
satisfy certain integral equations tSI whose kernels contain the function F2. 
Having determined the functions ~, d ,  and ~ ,  one can then obtain the 
transport coefficients. 

It should be mentioned that the results quoted above were obtained 
without any recourse to a density expansion. Therefore they are valid to all 
orders in the density. 

If we now make a density expansion of F2 

F2("" [F~) = ~ nZFI~)("'IF~) (6) 
l = 0  

where the first F~ ~} were explicitly obtained in I, one obtains density expansions 
for r and the functions N, ~ ,  and ~ as follows: 

r = ~ n~r ~) 

= (I/n) ~ + g0 + n~t  + "'" 

~ '  = (l/n) ~'B -+- ~r -}- n~'x -? ".- 

and 

~) = (1/n)~B + G0 + n~Jz + "'" 

(7) 

(8) 

(9) 

(10) 
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The various functions appearing in the right-hand sides of Eqs. (7)-(10) 
satisfy certain integral equations which we will discuss in the following 
sections. 

3. K I N E T I C  E O U A T I O N  A N D  T R A N S P O R T  C O E F F I C I E N T S  
T O  Z E R O T H  O R D E R  I N  T H E  D E N S I T Y  

In order to find the kinetic equation to zeroth order in the density, one 
uses the value of F~ ~ obtained in I, namely 

2 

F~~ , x2 ] F1) = Fz(xl , x~) s , x2) I~ Fl(xi ; t) (11) 
i = 1  

Substituting this expression into Eq. (2), comparing with Eq. (7), and 
substituting into Eq. (1), one finds that the kinetic equation to zeroth order 
in the density has the following form: 

p .  bF1 f dx~ 01~F2(q, q2) ~ (P ,  P~) Fl(q, p; t) F~(q, P2 ; t) (12) I 

at T m ~q : 

In this expression the operator 5f2, as is indicated, now acts only on the 
momenta. Proceeding as usual, we find that the right-hand side of Eq. (12) 
can be written as follows: 

r.h.s. = f dp2g f db b f dE f:| dl F~(b, l)(~/~l)[Fl(q, P1;  t)Fl(q, P~; t)] (13) 

Here the q2-integration was changed to an r21 = q2 --q~ integration, 
and this was done in cylindrical coordinates with the third axis in the direction 
of the relative velocity g = (p~ -- Px)lm. The coordinate along the third axis 
is denoted by I and the polar coordinates perpendicular to this axis by b and E. 
In (13) 

Pi = 5~2Pi, i = 1, 2 (14) 

The integration over l can be written as 

= : r...ll=~o f dlr~(b, 0(e/~0[...l f~ al(e/~l)[...l L ~=-~o 
- c o  

where lo is the correlation length to zeroth order in the density. Finally, one 
obtains that the kinetic equation to zeroth order in the density is 

~Fl+p ~F~ 
~---f n~" Oq = f dp~g f db b f d~ 

• [Fx(q,p{;t)Fl(q, p2';t)--F~(q,p;t)F~(q,p~;t)] (15) 
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where Pi' denotes the momenta after the collision. Equation (15) is the usual 
Boltzmann equation. It should be mentioned that the potentials we are 
considering are strongly repulsive ones. 

As is well known, the solution of Eq. (15), to linear terms in the gradient, 
is 

Fa = gl"(1 + r (16) 

with 

r = ~ " [O(lnO)/~q] + ~ B ~ ~  : ~u/~q (17) 

where f~B and ~B are solutions to well-known integral equations. (6) The 
transport coefficients obtained from Eq. (17) have already been obtained 
for different intermolecular potentials (6~ and found to be independent of 
density. 

We have thus shown that using the new boundary conditions discussed 
in I in order to solve the BBGKY hierarchy, we recover the usual Boltzmann 
equation for the dilute gas and the corresponding well-known transport 
coefficients to zeroth order in the density. 

4. S O L U T I O N  O F  T H E  K I N E T I C  E Q U A T I O N  T O  
FIRST O R D E R  I N  T H E  D E N S I T Y  

To first order in the density the solution of the kinetic equation is (5) 

r = No 3~' [~(ln O)/~q] + ~ o ~ ~  : (~u/~q) + ~o(~/Oq) �9 u (18) 

where the functions fr Sr and ~o satisfy the following set of integral 
equations: 

F ~ d  n ~'~ 1 Ft~t ~ [OBl(O)]2 -- f dx" {~"(0)(X, X z ] F ie(q) )Fle(p  t) (2mO 3) ( q ,  q) 

+ f dp' 05'(a)(x, p' I Fie(q)) Fl'(p') # ' f~,  

= f dp' r176 p'[F~ e) ~,'F~'(p') fr (19a) 

f dp' ~'(1)(x, p' ] F~'(q)) FI"(p') ~ '~  

1 
0 f dx' r176 x' I Fx~(q)) S~ ") 

-- -- f do' r176 p' ] F~(q))Fa'(O') ~ ' ~  (19b) 

82218/z-5 
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~ C1 (o) - 
3 m O ) [ 2 B l ( O ) - - ~ ]  

I f dx" fib'(~ x" [ Fie(q)) ~ ' "  (el' -- q) FI'(p')}, 
l 

30 

= - f dp' fib'<~ p' I F~(q)) Ft~(P ') ~'o 

with the subsidiary conditions given by 

f l~:I ;~F?(p) dp = o 

(19c) 

(20) 

Using Eqs. (26) and (29) of I for F~ ~ and F~ 1), respectively, one obtains 
that the functional derivatives of fib with respect to/:1 are, to zeroth order 
in the density, 

fib'(~ (x~ , x' I F?) F?(p') 

= f dx2 012F~.(ql , q2) ~ ( x 1 ,  x2) Fie(x1) Fle(x2)[•(x1 --  x ')  @ (~(x 2 --  x')] 

(21) 
(/~'(0)(X1 , P' I El e) F~e(P ') 

f dx~ O~2F~(ql, q~) SP2(xi, x2) F~e(xl) F~(x2)[S(p~ -- p') @ 8(p2 p')] 

(22) 
and to first order in the density, 

fib'(~)(xt, p' I FI ~) FI~(P ') = f dx2 012{g~l)(ql, q~) ~ga~(x~, x2) Fie(x1) Fie(x2) 

• [c3(Pl - -  P')  @ •(P2 - -  P' ) ]}  

f dx~ ~)~(xl, x2, x~) Fl~(xl) Fl~(x2) + F~(x~) 

x [8(pl  - -  p ' )  + 8(p2 - -  p ' )  i -  8(p3 - -  p ' ) ]  (23)  

The operator d)(xa, x2, xs) is defined in I. 
Substituting Eqs. (21)-(23) into Eqs. (19) and performing the usual 

calculations, one finds that the equation for q#o has the form 

d .~2 
X(p) s [~0 (0B~) + B~ ( 2m0 

(24) 
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where 

X(px)(~x/m) r 
2 

= f dx2 012g~l)(q1, q~) ~(Xl ,  x~) X(pa) X(pz) Z ~i~"(~i2) 
i=1 

X(pI)(~i~I/m) A(Pl) 
3 

= f dx2 012 f dx3 03(x1 , x2, x3) X(Pl) X(P2) X(P3) 2 Xi~B(~i2) 
i=1 

and 

X(PO(~a/m) L(PO 

= f dxz 012/'2(qz, q2) ~2(Xl, x~)(r/2)[(~22 -- "~2)/2toO] X(PO X(p.2) 

Fl'fp)  = nX(p) 

(25) 

(26) 

(27) 

(28) 

The operator CB appearing in Eq. (24) is the usual linearized Boltzmann 
operator given by (G) 

CB(h) -= f f  dp2 dO I(g, E) X(p2)[h(p~') + h(p() -- h(p0 -- h(p2)] (29) 

In Eq. (24) Bx is the second virial coefficient. 
The function fr obtained from Eq. (24) has to satisfy the subsidiary 

conditions (20). 
The equation for ~r is given by 

[X(p)/mO] ~~ +/~(p) + ~r(p) + N(p)] = Cs(~~ (30) 

where 

2 
= - - f  dx2 012g~l)(ql, q2) ~(x~, x~) X(pl) X(p2 ) ~ (~~ ~/B(~ 2) (31) 

i=1 

Olin) ~"(pl)(r176 [& -~- P(pl)] 
2 

: f dx2 01~F2(ql, q2) ~2(x1, x2) X(pl) X(P2) ff~ (S~ (32) 
i=J_ 

and 

[X(PO/mOl(~~ N(PO 
3 

= -- f dx2 012 f dxs (~3(X1 ' X2' X3) X(pl) X(P2) X(P3) 2 (~~ ~B(~I 2) 
i=1 

(33) 
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The function s J  o does not have to satisfy any subsidiary condition. 
Using the same arguments as given by several authors, (3) we also find 

that the bulk viscosity vanishes to first order in the density. 
One can, in principle, solve the integral equations (24) and (30) for the 

functions ~0 and d 0 ,  respectively. This requires the use of an intermolecular 
potential. In forthcoming publications we will present the solutions of  these 
integral equations for different molecular models. For the time being, we 
will assume that the functions ~fo and sr o are determined. 

5. T R A N S P O R T  C O E F F I C I E N T S  T O  FIRST O R D E R  I N  
T H E  D E N S I T Y  

The transport coefficients to first order in the density were obtained 
without any reference to the explicit form of F~ .(5) Substituting in these 
expressions the F~ ~) given by Eq. (29) of I, one finds that the thermal con- 
ductivity 2~ is, to first order in the density, 

~-  --K l ( i )  ~(z) A(i) ~(1) + ,,~oi + ,'~2 (34) 

with 

A(~ 1) = --(1/6m~O) f dp ~ X ( p )  No(~ 2) (35) 

Z(•) --(1/12mO) f dx2 dpz r" (~z + ~2)[~'(r)/r]/'2(q~, q2) 

2 
X ,~2(X1 , X2) X ( p l )  X ( p 2 ) r  �9 2 ~i~B(~i2) (36)  

i=1 

and 

~(~) = (1~6toO) f dx2 dp~ ~(r) /'2(qz q2) c, o2 

2 
• ~1"  S~(xl, x2) X(p0 X(p2) ~ Ni~B(~i 2) (37) 

i=l  

Analogously, the shear viscosity ~7 to first order in the density is given by 

v(1) = g i )  + (3s) 
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with 

~(~it) = --(1/15m) f dp ~ X ( p )  d0 (~  2) (39) 

r/2 ) = --(1/20) f dx2 dpl[cp'(r)/r] F2(qz, q2) 

2 

• ~ ( x l ,  x2) X(pit) X(p2) ~ [(r" # i )  2 -- Xr2@~13 ~ j sCB(gl 2) (40) 
/= i t  

The bulk viscosity, to first order in the density, vanishes. 

6. C O N C L U S I O N S  

In this work we have shown, that using the results obtained in I with 
the new boundary conditions, one recovers the usual Boltzmann kinetic 
equation for the dilute gas. 

We also give general expressions for the transport coefficients to first 
order in the density. 

It can be seen from the results in Section 4 and 5 that the transport 
coefficients to first order in the density are different from the results obtained 
by Choh and Uhlenbeck (a) using the boundary conditions proposed by 
Bogolyubov. In fact, first of all, the integral equations for f~0 and ~ o  [Eqs. 
(24) and (30)] have the same formal structure as the equations obtained by 
Choh and Uhlenbeck. However, the left-hand sides of the equations are 
different. The difference lies in the fact that in our expressions the medium is 
taken into account, and appears through the factors/1 s and g~ .  

Moreover, the integrands of the expressions for the transport coefficients 
[Eqs. (34) and (38)] also differ from the ones obtained by Choh and 
Uhlenbeck, for the same reason as given above. 

Finally, we would like to mention that we have obtained general ex- 
pressions for the transport coefficients to second order in the density, and 
these will be presented in a subsequent publication. 
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